Forster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment.
نویسندگان
چکیده
The lipid bilayer vesicle is a model of the cellular membrane. Even in this simple system, however, measuring the thermodynamics of membrane protein association is a challenge. Here we discuss Forster resonance energy transfer (FRET) in liposomes as a method to probe the dimerization of transmembrane helices in a membrane environment. Although the measurements are labor intensive, FRET in liposomes can be measured accurately provided that attention is paid to sample homogeneity and sample equilibration. One must also take into account statistical expectations and the FRET that results from random colocalization of donors and acceptors in the bilayer. Without careful attention to these details, misleading results are easy to obtain in membrane FRET experiments. The results that we obtain in model systems are reproducible and depend solely on the concentration of the protein in the bilayer (i.e., on the protein-to-lipid ratio), thereby yielding thermodynamic parameters that are directly relevant to processes in biological membranes.
منابع مشابه
Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain.
Understanding how the lipid environment influences transmembrane helix association requires thermodynamic measurements that can be interpreted in terms of specific chemical interactions. We have used Förster resonance energy transfer to measure dimerization of the glycophorin A transmembrane helix in detergent micelles. The observed Kd is at least two orders of magnitude weaker in sodium dodecy...
متن کاملLipid Bilayer Composition Affects Transmembrane Protein Orientation and Function
Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment...
متن کاملMeasurement of transmembrane peptide interactions in liposomes using Förster resonance energy transfer (FRET).
Present day understanding of the thermodynamic properties of integral membrane proteins (IMPs) lags behind that of water-soluble proteins due to difficulties in mimicking the physiological environment of the IMPs in order to obtain a reversible folded system. Despite such challenges faced in studying these systems, significant progress has been made in the study of the oligomerization of single...
متن کاملTransmembrane helix orientation and dynamics: insights from ensemble dynamics with solid-state NMR observables.
As the major component of membrane proteins, transmembrane helices embedded in anisotropic bilayer environments adopt preferential orientations that are characteristic or related to their functional states. Recent developments in solid-state nuclear magnetic resonance (SSNMR) spectroscopy have made it possible to measure NMR observables that can be used to determine such orientations in a nativ...
متن کاملStable interactions between the transmembrane domains of the adenosine A2A receptor.
G-protein-coupled receptors (GPCRs) must properly insert and fold in the membrane to adopt a stable native structure and become biologically active. The interactions between transmembrane (TM) helices are believed to play a major role in these processes. Previous studies in our group showed that specific interactions between TM helices occur, leading to an increase in helical content, especiall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical biochemistry
دوره 340 1 شماره
صفحات -
تاریخ انتشار 2005